Estimate of dimension of Noether-Lefschetz locus for Beilinson-Hodge cycles on open complete intersections

نویسنده

  • M. Asakura
چکیده

In his lectures in [G1], M. Green gives a lucid explanation how fruitful the infinitesimal method in Hodge theory is in various aspects of algebraic geometry. A significant idea is to use Koszul cohomology for Hodge-theoretic computations. The idea originates from Griffiths work [Gri] where the Poincaré residue representation of the cohomology of a hypersurface played a crucial role in proving the infinitesimal Torelli theorem for hypersurfaces. Since then many important applications of the idea have been made in different geometric problems such as the generic Torelli problem and the Noether-Lefschetz theorem for Hodge cycles and the study of algebraic cycles (see [G1, Lectures 7 and 8]). In this paper we apply the method to study an analog of the Noether-Lefschetz theorem in the context of Beilinson’s Hodge conjecture. Beilinson’s Hodge conjecture and its Tate variant concern the regulator maps for open varieties (cf. [J1, Conjecture 8.5 and 8.6]). To be more precise we let U be a smooth variety over a field k of characteristic zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Components of maximal dimension in the Noether-Lefschetz locus for Beilinson-Hodge cycles on open surfaces

In the moduli space M of smooth hypersurfaces of degree d in P over C, the locus of those surfaces that possess curves which are not complete intersections of the given surface with another surface is called the Noether-Lefschetz locus and denoted by MNL. One can show that MNL is the union of a countable number of closed algebraic subsets of M . The classical theorem of Noether-Lefschetz affirm...

متن کامل

On Beilinson’s Hodge and Tate Conjectures for Open Complete Intersections

In his lectures in [G1], M. Green gives a lucid explanation how fruitful the infinitesimal method in Hodge theory is in various aspects of algebraic geometry. A significant idea is to use Koszul cohomology for Hodge-theoretic computations. The idea originates from Griffiths work [Gri] where the Poincaré residue representation of the cohomology of a hypersurface played a crucial role in proving ...

متن کامل

A Noether-lefschetz Theorem and Applications

In this paper we generalize the classical Noether-Lefschetz Theorem (see [7], [5]) to arbitrary smooth projective threefolds. More specifically, we prove that given any smooth projective threefold X over complex numbers and a very ample line bundle L on X, there is an integer n0(X,L) such that if n ≥ n0(X,L) then the Noether-Lefschetz locus of the linear system H(X,L) is a countable union of pr...

متن کامل

Composantes De Petite Codimension Du Lieu De Noether-lefschetz: Un Argument Asymptotique En Faveur De La Conjecture De Hodge Pour Les Hypersurfaces

This paper gives an asymptotic description of the Noether-Lefschetz locus for smooth projective hypersurfaces in P C of large degree. I prove that successive small codimensional components of this locus correspond to surfaces containing a small degree subvariety of dimension n. This result generalises the work of Green and Voisin for surfaces in PC containing a line and a conic. Résumé Cet arti...

متن کامل

Speculations on Hodge theory

Recall that a Mumford–Tate domain DM is an open set in its compact dual ĎM — the latter is a rational homogeneous variety defined over Q (think of the upper half plane H ⊂ P1). Thus a polarized Hodge structure (PHS) φ has an “upstairs” field of definition k(φ). If H•,• ⊂ T •,• is a subalgebra then the Noether-Lefschetz locus NLH = {φ : Hg•,• φ ⊇ H} is defined over Q. Its components are defined ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003